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Estimation of the BER
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Bit error rate and receiver sensitivity

The bit error rate (BER) is the probability that a bit is incorrectly identified by the receiver.
= The error could be due to noise or signal distortion.
= A better name would be ‘bit error probability’.
= A traditional requirement for optical receivers is to have BER < 10-°

The receiver sensitivity is the minimum averaged received power necessary to a achieve a pre-
defined target BER.
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Bit error rate (BER)

Sampling the bit
1(t) »| at decision time
I(ty) =1

Decision
processor
ACT)

— 1lor0

—>| Clock recovery

Possible errors: a ‘1’ bit has been transmitted but decision processor says ‘0’

a ‘0’ bit has been transmitted but decision processor says ‘1’
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Probability density function

Sampled value 7 fluctuates from bit to bit: [ (t) = ip1p0 T 5150 (t) +irp(t)

Average value (I) over a bit period
" i, ifa ‘1’ bit was sent
" 1, ifa ‘0" bit was sent

Shot noise contribution
= Described (approximated) by Gaussian statistic for p-i-n (APD)
= Zero mean, variance o ?
= Dependent on the input signal level

Thermal noise contribution
= Approximated by Gaussian statistic
= Zero mean, variance op?
= Independent from the input signal level
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Sampled value and probability density function P( 1 |< 1 >)

Sampled value /

= Gaussian distribution with mean < I > and width 62 = g¢ + o7

= alzzagl +a%

= a(%:asz’(, +a%

P(I |<I>)

A

Written as N({I), o)

1 [_ (I - <1>>2]
oo P 202

cPrL
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BER calculation
We define the followings:
= p(1) the probability to send a ‘1, p(0) the probability to send a ‘0’
= P(0|1) the probability to decide 0 from a sent 1
The overall probability of error is therefore
Pr(error) = E{BER} = p(1)P(0|1) + p(0)P(1]|0)

BER =~ p(1)P(0|1) + p(0)P(1|0)

For p(1) = p(0) = 0.5, such as for pulse code modulation (PCM) have:

BER = %[P(O|1) + P(1]0)]
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Decision function

What are the conditional probabilities P(0|1) and P(1]0)?
= They will depend on the probability density functions of the sampled current value /.

P(110) = P(1ipo) and P(I|1) = P(1]iyy)
The decision function A( I ) takes the sampled current value 7 and has to decide if it corresponds to

a ‘1’ bitora ‘0’ bit
= Forp(1) = p(0) = 0.5 it is given by the likelihood ratio :

P([1) 1

AMD =570y <o
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Single threshold test

For unimodal noise distributions:

= |ikelihood ratio test is equivalent to comparing the sampled current value to a single current threshold
value I, , predetermined.

= The threshold value is at the intersection of the two distributions:

Ip = P(p|1) = P(Ip|0)

L2 ils—l

1
£ (1 | 1) & 1 <:> Threshold test

P(I|O)<0 [ <I,——0

Likelihood ratio
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Calculating error probabilities

Ip
(00]

P(1]0) = jN(ipo,JO)dI P(0]1) = fN(ipl,al)dI

— 00
Ip

P(I| )=N(,, o,)

P(1]0)=N(,,. o,)

' >
fime P(I)
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BER calculation

r 1 [ (I - i) 1 <1D—ip0>
P(1]0 =JNL' ,00 )d] = exp | — 4 dI——erfc
(10 = ) Nlipo o)l =252 pl 208 ] ooV

Ip Ip

f 1 (1 ) 1 I

. —ip1 p1 — Ip

P(0|1) = le ,0q)dl = ex p dl = —erfc( )
O = ) Mol =252 | p[ 2

2
with erfc(x) :\/_EJ exp(—y?) dy
X
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BER calculation

BER = %[p(ou) + P(1]0)]

1 — Ip Ip —i,0
BER = —|erfc p1 + erfc c
4 0'1\/_ 0'0\/§

.. Assumptions: i, =0, 6, =0,

BER depends on threshold value 7,

BER

| = Also note that in general 6, and o,
2 are not equal

0 01 02 03 04 05 06 07 08 09 1
Decision Level, | .ﬁI

cPrL
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Threshold level

d(BER)
dip
= Optimal value is at the intersection of the PDF for the ‘one’ and ‘zero’ levels

=0

Minimize the BER using

= Exact expression is given in the book

A good approximation is obtained when the probability of the two types of errors are equal:

ip1 — Ip ID—ipo)
P(0|1) = P(1]0) = erfc| -2 = erfc
(011) = P(1]0) (qﬁ) <%ﬁ
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Threshold level : thermal noise regime

Thermal noise dominated regime (02 < dZ2):

Both distributions are Gaussian with identical variance
The threshold value is therefore:

I _ ipl + ipO
b 2

= Set threshold at midpoint between means.
= When shot noise cannot be neglected, the threshold value shifts towards the ‘zero’ level.
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Q factor of a transmission
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Q factor and signal to noise ratio

e | In —1
The Q factor is defined as : P2 = 2 pOEQ

Q factor can be written in terms of signal levels & noise standard deviation using the expression for
the threshold current:

01 + Op

Q:

The Q factor is therefore a quantity that can be directly estimated from a graphical examination of
the eye diagram as displayed on an oscilloscope
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The Q factor and BER

We have defined iy —Ip Ip —ipg

Can rewrite

For O > 3:

01 0o

1 O |
BER = 2 [erfc( Pl D) + erfc

B8IT ERROR RATE

1078 |

1078

107"

1072

''''''

" BER of 10°

EPFL
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Eye diagram interpretation

Slope indicates sensitivity Signal excursion
to timing error, smaller the better Or wasted power

Amount of
distortion at
sampling instant

Amount of
noise that can
be tolerated

gl
<

Amount of distortion in Best time to sample

where zero crossings occur S >
Opening of the eye: time over

which we can successfully sample
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0 factor and signal to noise ratio (SNR) cPrL

A (not very accurate) BER estimate can be derived from the electrical signal-to-noise power ratio.

= Thermal noise limit (assuming [y = 0)

0=pL_m A
ZO-T 20-1 1
] 2 > Q — E VSNR
L
SNR = <ﬂ> = SNR = 402
01 -/
= Shot noise limit (assuming [y = 0)
Q=2 )
01 . Q =VSNR
N
l
SNR = <L1> = SNR = (2
01 -/
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Receiver sensitivity
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Receiver sensitivity ﬁrec

The receiver sensitivity ?rec depends on:
= the desired BER (or Q factor).
= the characteristic of the receiver.
= the characteristic of the signal sent over the link.

Let’s consider the following case:
= NRZ data in which the ‘zero’ bits contain no optical power (P, = 0)

— Pyt P =
Prec— 2 :Pl—zprec

= We can neglect dark current (i, = 0 A)
= Receiver uses an APD (the p-i-n case can be obtained by setting M = F, = 1)
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Receiver sensitivity ﬁrec

Characteristics of the ‘one’ bits
= Average current: iy, = MRP; = 2MRP,,,

= Shotnoise ¢4 = 2qM2F4R(2P, o )Af
4k TE, |
Ry

= Thermal noise 072~ =

Characteristics of the ‘zero’ bits
= Average current: i, = MRPy =0

= Shot noise : 0

,  4kgTF, 9 = Or
= Thermal noise 0T = R, Af

0, = \/0521 + 0%
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Receiver sensitivity ﬁrec

l —1
pl p0
hat: —
We know that: Q = ) )

We therefore have that: ¢ =

o1 + 0y

Prec_

2MRP, .,

2 2
\/051 + 07 + O

2 (aFa0af +

or
M

)

cPrL
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Receiver sensitivity for p-i-n

When thermal noise dominates in a p-i-n receiver:

When shot noise dominates in a p-i-n receiver:

(ﬁrec) — qu Qz X Af

pin,S R
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Optimum sensitivity on APD receivers

In a receiver dominated by thermal noise, APD will increase the SNR
There is an optimum gain, given by:

1 op 1/2 or 1/2
Mopt = ey (Qqu tha - 1) ~ <kAQqu>

The corresponding sensitivity is:

qf

(ﬁrec)APD Q (kAMopt +1+ ka)
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Degradation and power penalty
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Power penalty

Anything that degrades the system performance by departing from ideal
conditions tends to increase the required .. for a given BER

——> Power penalty

Extinction ratio

= Energy carried by the ‘0’ bits (limited modulator extinction ratio)
Intensity noise

= Light from transmitter will exhibit power fluctuations
Timing jitter

= Fluctuation of the sampling time
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Extinction ratio

P
The extinction ratio (ER) is defined as Tex = 0/1D1
= P, (P;) emitted power in off (on) state

= |deally should be 0

We use the facts that:

. egs . . — PO + P1
= By definition the average received poweris P, o = 5
lp1 — lpo
= Qparameteris (@ = P P
o1 + 0y

We find that the sensitivity degradation is

(1 — rex) 2RP, o,

1+r1,) 0+ 0
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Power penalty (dB)

Extinction ratio and power penalty cPrL

The power penalty in dB is by definition Pooc (T, > 0)
6ex — 1010g10 —

Prec(rex =0)

If thermal noise dominates

1 —7ex Rﬁrec = 1+ 7ex\ 070
= = Prec = = 101
¢ (1 + rex> or ¢ \1-1,/) R 9810

147,

1—r,,

10

=  Shows how much the received optical power has to be increased to
maintain BER

= A 1dB penalty occurs for r,. = 0.12. Increased to 4.8 dB for r,, = 0.5

Al | = |n practice, for laser biased below threshold r,, < 0.05.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 u
Extinction ratio

Penalty is larger for APDs
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Intensity noise =PrFL

Light emitted by any transmitter exhibits power fluctuations called intensity noise

= QOptical power fluctuations (with variance sz) are converted to current fluctuation (with variance ;%)
= Adds to those from shot and thermal noise

02 =02+ 0% + of

1
o] = R((AP&))Z = RP;, 77 1, is the intensity noise parameter

= The intensity noise parameter is related to the relative intensity noise (RIN) of a laser

1 (0 0]
rf = > RIN (w)dw
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Power penalty (dB)

Power penalty due to RIN

Assuming .= 0: P,=0, and P; = 2P,

orQ + qAfQ?

ﬁrec(ri) = R(1 - r2Q2) = 0y, = 10log; L _ TIZQZ]

10

RIN wall:

too large.

= BER saturation is called a BER floor.

0.2
Intensity noise parameter

cPrL

= Even infinite power will not yield desired BER if r, is

For »,=0.167, the BER cannot be reduced below 10
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Timing jitter

Assumed that the sampled point was at the bit center
= Decision instant is determined by the clock recovery circuit
= Since input to clock recovery is noisy, sampling time fluctuates bit to bit by timing jitter At

= |f bit not sampled at center, sampled value of a’1’ bit might be reduced by an amount that depend on
At

I a
P |
Ai. i L1712
/ !
12 € e : ______ ;

Lecture 10 slide 32



Timing jitter penalty

10

Power penalty (dB)

0.05

0.1
Timing jitter parameter, Br,

0.15

0.2

Parameter Brj

= 1;is RMS value of the timing jitter A¢

= Br;is fraction of bit period over which decision
time fluctuates

Penalty is negligible for Bt;<0.1

= Want standard deviation jitter less than 10% of
bit period

Penalty becomes infinite (jitter wall) for Bt;> 0.2
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Measuring receiver performance

Simulate pseudo-random (uncorrelated) string of bits
= Use a bit error rate tester (BERT)

Sensitivity versus bit rate
= Measure BER as a function of average received power
= Sensitivity is average received power for a BER of 10

-20 .
- - :
— B L dL PiaiN= \
£ -30 . B s S
ﬁ [ F i
S -40 P Y.
= 7 3 o opp
=
ia =
Y 50 ‘_ oa /
o [ Bi=) 11
W Bgsgag }-: /
5 H N
g -60 | ‘éf e C
- @5
2225 S350
-70
107 10° 10’
From Agrawal BIT RATE (Gb/s)
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Further sources of power penalty
The previously mentioned power penalties were all due to the transmitter and the receiver.

Several more sources of power penalty appear during propagation
= Modal noise (in multi mode fibers)
= Mode partition noise (in multi mode lasers)
= |ntersymbol interference (ISI) due to pulse broadening
= Frequency chirp
= Reflection feedback

All of these involve dispersion.
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Measuring penalty from a link

First measure back-to-back performance
= Connect transmitter directly to receiver

Then connect transmitter to the link back to the
receiver

BER curves will shift due to losses, dispersion etc.

= Power penalty is estimated by the shift of the curves
at a given BER

BIT ERROR RATE

L 2®4PRBS
. _®0km L
LT A 2040 km S
-~ [J2520km ©

-34 -32  -30 28 26 24 22 20 18
RECEIVED POWER (dBm)
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Conclusion

Optical receiver converts the optical signal back to electrical form
= Main component is photodetector
= p-i-n (or APD for low power systems) are the most common

Impairments of real receiver
= Noise: vertical closure of the eye and increased BER

* Electronic noise: thermal noise (mostly from R, and preamplifier), shot noise
* Fluctuation in APD gain
* Signal related impairments (initially noisy signal)
= Timing jitter: horizontal eye closure and increased BER
* Imperfect clock recovery

The continuous monitoring of the eye diagram (Q factor) is common in actual systems as a measure
of performance.
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